IEEE Std 1722.1-2013
(AVDECC) Overview

Jeff Koftinoff jeff.koftinoff@statusbar.com
January 2014
IEEE 1722.1-2013 (AVDECC)

- Audio
- Video
- Discovery
- Enumeration
- Connection management
- Control
IEEE 1722.1-2013 (AVDECC)

Roles:

- Controller
- Talker
- Listener
- Responder
AVDECC Entity Model (AEM)
AVDECC Discovery (ADP)

• Advertising
• Querying (Global/Specific)
• Redundancy
• Identification (Signal/Wink)
AVDECC Connection Management (ACMP)

- Connection of AVB streams with audio channel mapping
- Persistent connections
- Stream connection status and health
- Configuration of redundant connections
AVDECC Enumeration (AECP)

- Describe the internal structure of the device from the stream entry/exit through to the "physical" entry/exit
- Describe and control the mapping of media sources and sinks to channels within the stream sinks and sources
- Describe and control the signal chains such as DSP, mute, volume, mixers, selectors, through the device
- Provide user settable names for many objects within the device including stream, media sources and sinks
AVDECC Enumeration (AECP)

- Describes and controls the clocking model within the device to configure media clocking sources, sample rate converters
- Describe the internal latency through the device from the defined timing reference plane to the "physical" world
- Describe the AVB capabilities of the interfaces and provide the current AVB related information such as 802.1AS GMID, and MSRP domain, for each AVB interface
IEEE 1722.1-2013 (AVDECC)

• Provides diagnostic information such as AVB interface event counters and errors, stream packet event counters and errors, and clock domain lock status, as well as vendor specific counters when necessary.

• Describe and control generic control points within the device such as location information, enables, video camera controls, and custom controls.
IEEE 1722.1-2013 (AVDECC)

• Performs basic authentication of controllers
• Perform key management for securing the network
• Enable and disable transport and stream security
AVDECC Control (AECP)

- Distributes updates to multiple interested controllers
- Exposes signal path, processing latency and control latency
- Rich set of control meta-data available:
 - value data format and encoding
 - Min/Max/default/current values
 - SI units options: Time, Frequency, Distance, Temperature, Mass, Voltage, Current, Power, Energy, Resistance, Velocity, Level, etc, with scaling.
- single values, multiple values, array values, and bode plots of filters and measurements
Offline Provisioning

• A device’s capabilities and control points are described by the set of descriptors that it publishes.

• These descriptors are put into a standard XML Schema form which allows manufacturers to publish the Entity Models for their products on their website.

• These XML files can then be loaded into an AVDECC Controller which can then be used to instantiate virtual AVDECC Entities based on them.

• The user can then connect them and configure them before arriving at the venue.
Remote Access

- Allows access to AVB networks via TCP/IP for control and management
- Uses the existing HTTP 1.1 protocol which enables it to work over the internet via existing network infrastructure including traversing multiple transparent or non-transparent HTTP proxies
- Secured with existing SSL/TLS encryption tools
- Authentication with existing HTTP Basic/Digest authentication
Graceful Failures and Redundancy

• Approach depends on the installation
• Cost of failure versus cost of implementation
• For some large systems we have set up talkers and listeners with separate but simultaneous ethernet ports, using two separate AVB networks
• This allows any packet or cable or switch to fail without any impact to the show
Graceful Failures and Redundancy

• Listeners can be set to have a primary, secondary, and tertiary backup stream for content
• The Listener can decide on its own to use the available stream automatically
• Not all Listeners have this capability
• This allows you to have redundant/failover talkers
Open Source

General info: https://avb.statusbar.com/

BW Calculator: https://abc.statusbar.com/

XMOS: https://github.com/xcore

Intel: https://github.com/intel-ethernet/Open-AVB

Jeff Koftinoff: https://github.com/jdkoftinoff/jdksavdecc-c

Audioscience: https://github.com/audioscience/avdecc-lib